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Abstract. The objective of this paper is to assess the predictive capability of different classes of extended plasticity
theories (bounding surface plasticity, generalized plasticity and generalized tangential plasticity) in the modeling of
incremental nonlinearity, which is one of the most striking features of the mechanical behavior of granular soils,
occurring as a natural consequence of the particular nature of grain interactions at the microscale. To this end,
the predictions of the various constitutive models considered are compared to the results of a series of Distinct
Element simulations performed ad hoc. In the comparison, extensive use is made of the concept of incremental
strain-response envelope in order to assess the directional properties of the material response for a given initial
state and stress history.
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1. Introduction

Nonlinearity and irreversibility are striking features of the mechanical behavior of granular
soils which affect the response of virtually all geotechnical structures, such as shallow and
deep foundations, excavations, tunnels, etc.

From a mathematical standpoint, the theory of plasticity has been shown to provide a
convenient framework to describe these aspects of soil behavior. Early applications of per-
fect plasticity in geotechnical engineering, already back in the 1950s, dealt with the analysis of
limit states, see e.g.[1,2] for a thorough account. At that time, nonlinearity and irreversibility
were considered to be of importance only when dealing with failure conditions, whereas soil
behavior far from failure was typically assumed as linear elastic. After the pioneering work
of Roscoe and coworkers in Cambridge [3,4], the application of plasticity theories evolved
towards the formulation of fully general constitutive equations for describing soil behavior in
all possible initial states and loading conditions.

Over the last 20 years, a number of modifications of the classical theory have been pro-
posed, which attempted to cover further aspects of experimentally observed soil behavior (e.g.,
non-associativeness, intrinsic or induced anisotropy, hysteresis, soil liquefaction, strain locali-
zation into shear bands, etc.) in order to tackle other, more challenging classes of geotech-
nical engineering problems. These include cyclic or dynamic loading conditions (earthquakes,
vibrating machines, wave loading) and soil-structure interaction in deep excavations and tun-
nelling, where different zones of soil experience widely different stress-paths. The breadth and
depth of such scientific production is well portrayed, for example, by the proceedings of the
workshops held in Grenoble [5], Cleveland [6], and Horton [7,8].
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The objective of this paper is to assess the predictive capabilities of some ‘extended’ plas-
ticity theories recently proposed for the analysis of cyclic behavior of soils. Rather than con-
sidering monotonic loading paths of finite and relatively large size, the main focus of this
study is on the qualitative features of the incremental response, with particular reference to
the effects of loading direction and initial state. The evaluation of the models considered is
based on the comparison with a reference incremental response as obtained from numerical
experiments with the distinct element method (DEM) on an idealized granular material con-
sisting of a random assembly of spheres. This has been shown to be a reliable substitute for
a real granular soil which allows to highlight a number of details which are very difficult, if
not impossible, to extract from real laboratory experiments [9].

The structure of the paper is as follows. In Section 2, some general principles of constit-
utive modeling of granular materials are given and the notion of incremental nonlinearity is
defined. The main features of the DEM model used in this study are described in Section 3,
along with the details of the numerical testing program and the criteria adopted in the inter-
pretation of the corresponding results. The details of the particular constitutive models cho-
sen for this investigation are given in Section 4. Their predictions are then compared with the
reference behavior in Section 5. Some concluding remarks are finally drawn in Section 6.

As for the notation, boldface lower- and upper-case letters are used to represent vector
and tensor quantities. The symbols 1 and I are used for the second-order and fourth-order
identity tensors, with components:

(1)ij = δij , (I )ijkl = 1
2
(δikδjl + δilδjk). (1)

The symmetric and skew-symmetric parts of a second-order tensor X are denoted as:
sym X := (X +X

T
)/2 and skw X := (X − X

T
)/2, respectively. The dot product is defined as

follows: v ·w := viwi for any two vectors v and w; X · Y :=XijYij for any two second-order
tensors X and Y . The dyadic product is defined as follows: [v ⊗w]ij :=viwj for any two vec-
tors v andw; [X ⊗ Y ]ijkl :=XijYkl for any two second-order tensors X and Y . The quantity

‖X‖ :=
√

X ·X denotes the Euclidean norm of X . The usual sign convention of soil mechan-
ics (compression positive) is adopted throughout. In line with Terzaghi’s principle of effective
stress, all stresses are effective stresses, unless otherwise stated. In the representation of stress
and strain states, use will sometimes be made of the invariant quantities p (mean stress), q
(deviator stress), and θ (Lode angle), defined as

p := 1
3
(� ·1) , q :=

√
3
2
‖s‖ , sin(3θ) :=

√
6

(s 3) ·1[
(s 2) ·1

]3/2
(2)

and εv (volumetric strain), εs (deviatoric strain), ε̇v (volumetric strain rate), and ε̇s (deviatoric
strain rate), defined as

εv := ε ·1 , εs :=
√

2
3
‖e‖ , ε̇v := ε̇ ·1 , ε̇s :=

√
2
3
‖ė‖. (3)

In Equations (2) and (3), s := � − p 1 is the deviatoric part of the stress tensor
e := ε − (1/3)εv 1 and ė := ε̇ − (1/3)ε̇v 1 are the deviatoric parts of the strain and the strain-
rate tensors, respectively, while s2 and s3 are the square and the cube of the deviatoric stress
tensor, with components (s2)ij := sikskj and (s 3)ij := siksklslj . It is worth noting that in (3)4,
with a slight abuse of notation, the symbol ε̇s has been employed to denote the second (de-
viatoric) invariant of the strain-rate tensor, which generally does not coincide with the time
rate of εs , as defined in (3)2.
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2. Constitutive modeling of granular mterials

According to long-standing experimental evidence, the mechanical response of soils is known
to strongly depend on such factors as current state, previous loading history, load increment
size and direction and (possibly) time. In principle, this implies that an appropriate descrip-
tion of soil behavior requires the effective stress � to be a function of the deformation history.
Mathematically, this is expressed by the following general equation:

�(x , t)=
∞
G
τ=0

[
F
(t)
(X , τ )

]
, (4)

where F
(t)
(X , τ ) := F (X , t − τ), with τ ≥ 0, is the history up to time t of the deformation

gradient at a material point X :

F (X , t) := �φ

�X
(X , t) (5)

associated with the motion x =φ(X , t) carrying point X in the reference configuration to its
position x in the current configuration at time t1. Note that, since G is a functional and not
a function, the knowledge of the strain at time t is not sufficient to uniquely determine the
state of stress.

As shown by [11], an inviscid material whose constitutive functional is differentiable is nec-
essarily elastic. Therefore, non-differentiable, nonlinear functionals should be employed in the
constitutive equation (4) whenever irreversible, inelastic behavior is of concern, which is the
norm, rather than the exception, in geotechnical applications. However, working with nonlin-
ear, non-differentiable functionals poses formidable mathematical problems, even in the sim-
plest cases.

An alternative strategy, which is commonly adopted in soil modeling, is to use an incre-
mental (or rate-type) formulation, in which the (objective) stress rate is given as a function of
the rate of deformation d := sym∇v (v :=dφ/dt being the spatial velocity) and of the current
state of the material:

�
�=G

(
�,q ,d

)
. (6)

In (6),
�
� is the Jaumann-Zaremba stress rate, defined as

�
� := �̇+��−��, (7)

where � := skw∇v is the spin tensor, and q represents a set of internal state variables, which
are introduced to account for the effects of the previous loading history. An additional set of
rate equations is then required to define the evolution of the internal variables in time (hard-
ening laws in the framework of classical elastoplasticity).

In the following, we will restrict ourselves to rate-independent behavior and linear kine-
matics. The latter assumption allows to rewrite (6) as

�̇ =G
(
�,q , ε̇

)
, (8)

where the Jaumann stress rate
�
� has been replaced by the standard time rate �̇, and the rate

of deformation d with the (linearized) strain rate tensor ε̇.

1That the state of stress at a point is solely determined by the history of the deformation gradient at
that point, and does not depend on the deformation of the neighboring points, is a consequence of
the principle of local action; see [10].
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Rate-independence means that a change in the time scale does not affect the material
response, e.g., doubling the strain rate doubles the stress rate. More generally:

G
(
�,q , λε̇

)
=λG

(
�,q , ε̇

)
, ∀λ>0. (9)

The above equation states that the function G is positively homogeneous of degree one in ε̇.
This latter property yields the following alternative expression for the constitutive equation (8):

�̇=D
(
�,q ,�

)
ε̇, (10)

where D represents the (fourth-order) tangent stiffness tensor at the current state, which
depends on the strain rate only through its direction, defined by the unit tensor:

� := ε̇

‖ε̇‖ . (11)

Equation (10) provides a general representation for rate-independent constitutive equations
which includes as particular cases most of the existing theories for geomaterials, including
non-linear (hypo)elasticity, classical and extended plasticity, endochronic plasticity and hyp-
oplasticity, see e.g. [12] and references therein. In hypoelasticity, the constitutive function G is
linear in ε̇, which implies that the tangent stiffness tensor D does not depend on the strain-
rate direction �. In all the other theories mentioned above, G is a nonlinear function of the
strain rate, and D explicitly depends on �. In this case, the material behavior is said to be
incrementally nonlinear, see [13].

The appropriate description of the observed incrementally nonlinear behavior of granu-
lar materials is of paramount importance in constitutive modeling of granular media. This
is especially relevant in a number of geotechnical engineering problems, for example in pres-
ence of cyclic loading conditions (earthquakes, vibrating machines, wave loading), or when-
ever different zones of soil experience widely different stress-paths, such as in deep excavations
or tunnelling.

3. Incremental behavior of an analogue granular material

3.1. Preliminaries

The most natural and direct way to discriminate among the different classes of constitutive
equations which are capable of describing incremental nonlinearity is to compare their pre-
dictions with the experimentally observed response of real granular materials. Conventional
experiments on monotonic loading paths of finite (and quite large) size do not provide direct
information in this respect. Rather, the proper definition of the incrementally nonlinear char-
acter of soil response requires the collection of data from experimental programs specifically
designed in order to investigate the nature of the material response as a function of loading
intensity and direction. To this end, the most natural approach is to perform a program of
so-called stress-probing experiments, in which incremental strains are typically measured by
applying a series of stress increments to a number of ‘identical’ specimens, with a common
initial state. The stress increments ( probes) should have an identical magnitude and point in
different directions of the stress space.

As far as plasticity theory is concerned, such an experimental investigation might help
answering such key questions as
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(i) is there any domain of finite size in stress space where the response is incrementally lin-
ear (i.e., hypoelastic)?

(ii) is the occurrence of irreversible (plastic) strains associated to some particular loading
directions?

(iii) is the direction of plastic strains affected by loading direction?
(iv) is the plastic strain rate tensor coaxial to the stress tensor?
Only a few such investigations have been actually performed on sands [14,15], essentially
because carrying out stress-probing experiments is, in practice, extremely difficult. First of all,
in order to rule out the unavoidable differences between one specimen and another of the
same soil, one might be tempted to perform all probes on a single specimen. However, this
is not recommended because the application and removal of stress increments may generate
irreversible deformations, thus altering the initial state of the material for subsequent probes.
Therefore, as many separate specimens are needed as the number of probes, with the associ-
ated experimental difficulty of having each time a specimen which is ideally ‘identical’ to the
others – not to speak of the time required to apply to each of them the same loading history
up to the initial state. Moreover, the quality of the results crucially depends on the accuracy
with which the strains are measured and the stresses are controlled, especially if the size of
the probes is relatively small, as it should be to reasonably approximate the infinitesimal (tan-
gential) response of the material. Finally, the distinction between reversible and irreversible
components of the total measured strain increment requires either a constitutive assumption
(typically, on the elastic behavior), or to perform for each probe a closed loading-unloading
cycle.

In an attempt to circumvent these experimental problems, Bardet and Proubet [16] first
suggested the use of numerical simulations with the distinct element method as a convenient
tool to investigate the incremental behavior of granular materials. The numerical ‘experiments’
were conducted on a 2D idealized material consisting of a random assembly of circular disks.
Further contributions along the same lines were later provided in the early 1990s [17–19]. This
approach has been recently revived, also thanks to significant improvements of both computer
power and numerical algorithms. Among the key factors, one should mention the dramatic
increase of the maximum number of degrees of freedom which can be handled by modern
computer architectures, a much better algorithmic description of boundary conditions, and
improvements in terms of accuracy, stability and other related numerical issues. In particular,
it is possible nowadays to perform fully 3D simulations in which the behavior of the idealized
soil can be explored in the three-dimensional principal stress space.

An extensive program of 3D DEM simulations of stress-probing experiments was recently
carried out by the authors [9,20,21]. In this paper the results of that study will serve as a
reference for evaluating the performance of the elastoplastic constitutive models presented in
Section 5.

3.2. Details of the DEM model

All the numerical simulations described in the following were performed with the Distinct
Element code PFC-3D developed by ITASCA Consulting Group [22]. This code is the 3D
generalization of the DEM code originally introduced for the analysis of rock-mechanics
problems [23] and later applied to the micromechanics of analogue 2D granular materials by
Cundall and Strack [24].

In PFC-3D, the soil grains are modeled as rigid spherical particles of arbitrary size, which
can (slightly) overlap at the interparticle contacts. The particle interaction at the contacts is
defined by appropriate contact constitutive equations, characterized by
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Figure 1. DEM model of a sand specimen (after [9,20,21]).

(i) linear or nonlinear (Hertzian) force-displacement law with finite normal and tangential
contact stiffnesses (kn and ks);

(ii) intergranular slip controlled by a frictional law of Coulomb type, with friction angle φµ;
(iii) the possibility of modeling intergranular bonding at the contacts, with finite bond

strength, in order to reproduce the behavior of cemented soils or soft rocks.
The equation of motion for each particle and the nonlinear contact constitutive equations at
each contact are integrated in time by means of an explicit finite-difference scheme. The inter-
ested reader is referred to [25,26] for further details on the application of DEM to the mod-
eling of idealized granular materials.

The DEM model was designed as a small but statistically equivalent sample of a real
dense sand (Hostun sand), for which a limited amount of data from stress-probing experi-
ments is available [15]. The sample is composed of about 3500 rigid and weightless spherical
particles of different sizes, randomly assembled to form a cubic specimen with a side length of
4·5 mm (Figure 1). As for Hostun sand, the adopted grain-size distribution corresponds to a
collection of particles with diameters ranging from 0·15 to 0·45 mm. The initial dense packing
of Figure 1 is characterized by the same initial porosity (n = 0·42) of the actual sand speci-
mens tested in the laboratory [15].

As for intergranular contacts, a linear elastic/perfectly-plastic behavior with purely fric-
tional limit condition (no interparticle bonding) was assumed. The boundaries of the cubic
specimen are defined by introducing smooth ‘wall’ elements, to which either stresses (through
wall-applied forces) or displacement rates (through prescribed wall speed) can be imposed
(walls are not shown in Figure 1).

It is important to emphasize that, contrary to most DEM studies of granular assemblies, in the
interpretation of the numerical results the specimen was considered as a ‘single element’ subject to
homogeneous states of stress and strain. No attention was paid to the details of the contact-forces
distributions and local grain kinematics, the objective of the experiments being to investigate the
material response from a purely phenomenological standpoint. In this respect, it can be noted that,
since the walls containing the cubic specimen are frictionless, the principal directions of stresses
and strains coincide with the coordinate axes x, y and z shown in Figure 1. Principal strains are
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Table 1. Material parameters of the DEM model (after [9,20,21]).

kn ks tan(φµ)
(kN/m) (kN/m) (–)

100·0 25·0 0·35

calculated directly from wall displacements, while the corresponding principal stresses are obtained
from boundary forces, as in conventional laboratory testing.

Another fundamental issue concerns the possibility of decomposing the total computed
strain increments into a reversible (‘elastic’) part and an irreversible (‘plastic’) part:

�ε =�εe +�εp. (12)

In earlier investigations with 2D models [17,18], a strategy based on the use of closed stress
loops was adopted to compute the irreversible part of the strain increment. As for real labo-
ratory tests, this procedure relies on the assumption that the strains occurring during unload-
ing are purely reversible, which is, however, not always the case. A different approach was
adopted in [9,20,21], where the reversible component of the strain increment was directly
determined by means of an ‘elastic’ counterpart of the DEM specimen, in which the mech-
anisms responsible for energy dissipation (interparticle sliding) and structure rearrangement
(opening of contacts) are inhibited at the microscale. Plastic strain increments are then com-
puted from the kinematic decomposition (12).

The complete definition of the numerical model required the calibration of normal and
shear contact stiffness, kn and ks, and interparticle friction angle, φµ. These parameters were
determined by trial and error in order to provide a reasonable fit with the experimental data
reported in [15]. In order to compensate the effect of the spherical shape of the particles in
the numerical model – which could otherwise lead to unrealistically low mobilized stress ratios
at ultimate failure; see [9] – all the DEM simulations were performed by keeping the particle
rotations fixed. Note that the assumed boundary conditions (perfectly rigid and smooth walls)
and this additional kinematic constraint tend to inhibit any inhomogeneity in the equivalent
macroscopic strain field, i.e., strain localization. The complete set of parameters for the DEM
model is given in Table 1.

As has been thoroughly discussed by Calvetti et al. [9,20,21], the DEM model proves
remarkably effective in describing such a complex behavior as that of a real dense sand, over
a large spectrum of loading paths, both from a qualitative and – to a somewhat lesser extent –
quantitative point of view. This is even more remarkable if one considers the relative simplic-
ity of the numerical model at the microscopic level (spherical grains, simple elastic-frictional
interactions at grain contacts, and fixed rotations) and the extremely low number (only 3) of
material parameters required for its complete definition.

3.3. Program of numerical stress probing

As detailed in [20,21], the program of numerical stress-probing tests included the two follow-
ing types of incremental loading conditions:
(a) axisymmetric probes (�σx =�σy);
(b) deviatoric probes (�σx +�σy +�σz=0).
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Figure 2. Incremental stress probes: (a) axisymmetric probes; (b) deviatoric probes.

Figure 3. Stress-strain response of the DEM model upon the loading path OABCB′.

The norm of all stress probes is constant and equal to 10 kPa. The stress-probe direction is
defined by the angle α�σ in the so-called Rendulic plane of stress increments σz:

√
2�σx for

probes of type (a), and by the Lode angle of the stress increment, θ�σ , for probes of type (b),
see Figure 2.

In [9,20,21] several different initial states were investigated. Herein, only two of them will
be considered, both characterized by the following stress state:

σx0 =σy0 =100·0 kPa, σz0 =200·0 kPa (13)

but possessing a different loading history, as sketched in Figure 3. Virgin state B was reached
by the two-stage stress path OA-AB, corresponding to isotropic compression and standard
compression at constant confining stress, respectively. Preloaded state B′ was obtained by first
loading along the path OA-AC, and then unloading along CB′.

The overall behavior of the DEM model along the loading-unloading path ABCB′ is also
shown in Figure 3, in terms of deviator stress, q, and volume strain, εv, plotted as functions
of axial strain, εz. Note that the net volume strain increment occurring in the closed loop
BCB′ is almost negligible, i.e., the porosity at B′ (n = 0·4178) is practically unchanged as com-
pared to state B (n = 0·4176). Therefore, the two states considered differ from each other only
in terms of the previous loading history.

In the following, the response of the granular assembly to the stress-probing program, as
well as the predictions of the different models introduced in Section 4, is depicted by using
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Figure 4. Incremental strain response envelopes: (a) axisymmetric probes; (b) deviatoric probes.

the so-called incremental strain-response envelope, as defined in [27]. Such a representation fol-
lows directly from the concept of stress-response envelope, first proposed by Gudehus [28] as
a convenient tool for visualizing the properties of rate-type constitutive equations. According
to Gudehus, a stress(strain)-response envelope is defined as the image in the stress(strain)-
rate space of the unit sphere in the strain(stress) rate space, under the map defined by the
constitutive equation. By simply replacing rates with finite-size increments, the same defini-
tions apply to the incremental response envelopes. In the general case, an incremental strain-
response envelope (RE, hereafter) is a ‘surface’ in a six-dimensional space. However, in the
two particular loading conditions considered, the most natural choice is to represent the sec-
tion of the REs in the planes of work-conjugated strain increment quantities; see Figure 4.

The size of each strain-increment vector defining the RE can be directly interpreted as a
directional secant compliance of the material, for the associated loading direction and stress-
increment magnitude. For a vanishing stress-increment norm, the RE asymptotically meets the
strain-response envelope defined in terms of rates. Therefore, provided that the stress probes
are ‘small’ enough, the REs obtained from numerical simulations yield useful information on
the underlying constitutive behavior of the material. For example, in axisymmetric conditions,
it is easy to show that an incrementally linear behavior transforms the unit circle in Figure 2a
into an ellipse centered at the origin of the strain-increment plane. Thus, any significant devi-
ation from this kind of response, such as a shift of the center of the RE from the origin or
a marked asymmetry of its shape, strongly suggests some form of incremental nonlinearity.

4. Continuum plasticity models

All the models considered here have been developed as extensions of an elastoplastic constit-
utive model which derives from the isotropic hardening model of Nova [29] and its aniso-
tropic hardening extension proposed by di Prisco [30,31]. The structure of the basic model
is detailed in Section 4.1, while three hierarchical extensions of the formulation are presented
in Sections 4.2–4.4.

4.1. Anisotropic hardening elastoplastic model

4.1.1. General formulation
Following the previous works of Nova and coworkers on granular soils [29–32], a constitu-
tive model has been developed within the framework of the classical theory of anisotropic
hardening elastoplasticity, which is capable to reproduce the salient features of the mechanical
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response of coarse and fine-grained soils, such as pressure dependence, dilatancy, brittle-duc-
tile transition and critical state.

As usual under the hypothesis of linear kinematics, the strain rate is decomposed additively
in an elastic, reversible part, ε̇e, and a plastic, irreversible part, ε̇p:

ε̇ = ε̇e + ε̇p. (14)

As in [33], the elastic behavior of the material is defined by postulating the existence of a
strain-energy function ψ(εe) such that

�(εe)= �ψ
�εe

(
εe) (15)

By differentiation, the hyperelastic constitutive equation in rate form is obtained:

�̇=D
e (

εe) [ε̇ − ε̇p] (16)

in which:

D
e

:= �2ψ

�εe ⊗�εe (17)

is the fourth-order elastic stiffness tensor.
Irreversibility is introduced by requiring the state of the material, defined in terms of the

stress tensor � and the internal variables q , to lie in the convex set:

Eσ :=
{(

�,q
) ∣∣∣f

(
�,q

)
≤0

}
, (18)

where f (�,q ) is the yield function. The evolution of plastic strains is defined by prescribing
the following classical flow rule:

ε̇p = λ̇n g(�,q ), n g := 1
g∗

�g
��
, g∗ :=

∥∥∥∥
�g
��

∥∥∥∥ (19)

in which n g defines the plastic flow direction as the normalized gradient of a scalar plastic
potential g(�,q ) and λ̇≥0 is the plastic multiplier.

The evolution of the internal variables is provided by the following hardening law:

q̇ = λ̇h (�,q ), (20)

where h is a suitable hardening function.
The plastic multiplier appearing in (19)1 and (20) is subject to the so-called Kuhn-Tucker

complementarity conditions:

λ̇≥0 , f (�,q )≤0 , λ̇f (�,q )=0, (21)

stating that plastic deformations may occur only for states on the yield surface. Prager’s con-
sistency condition requires that, for plastic loading processes (λ̇>0):

ḟ = �f
��

· �̇+ �f

�q
· q̇ =0. (22)

When the normalized loading direction n f is defined as

n f := 1
f ∗

�f
��
, f ∗ :=

∥∥∥∥
�f
��

∥∥∥∥ (23)



An assessment of plasticity theories for granular soils 275

and the constitutive equation (16) and the hardening law (20) are taken into account, when-
ever plastic loading occurs, then

f ∗n f ·D
e
ε̇ − λ̇

(
f ∗n f ·D

e
n g − �f

�q
·h

)
=0. (24)

When, for all admissible states
(
�,q

)
, the yield condition, the flow rule and the hardening

law are assumed such that the inequality:

Kp :=n f ·D
e
n g +Hp >0, Hp :=− 1

f ∗
�f

�q
·h (25)

is always satisfied,2 then Equation (24) provides the following expression for the plastic mul-
tiplier:

λ̇= 1
Kp

〈
n f ·D

e
ε̇
〉

(26)

in which 〈x〉 := (x+|x|)/2 is the ramp function. The scalar quantity Hp in (25) is the so-called
plastic modulus.

When the above expression for the plastic multiplier is substituted in (19) and (20), the
time rates of � and q can be expressed as functions of the corresponding rates of the total
strain ε:

�̇=D
(
�,q ,�

)
ε̇, q̇ =H

(
�,q ,�

)
ε̇ (27)

with

D :=D
e − H(λ̇)

Kp

(
D

e
ng

)
⊗
(
nfD

e
)
, (28)

H := H(λ̇)
Kp

h ⊗
(
nfD

e
)

(29)

in which H(x) is the Heaviside step function, which is equal to 1 if x > 0 and 0 otherwise.
Note that the dependence of D and H on the strain-rate direction � is controlled by the sign
of the plastic multiplier; see (26).

4.1.2. Hyperelastic behavior
The adopted stored-energy function is the same that used in [33,36]. The function ψ(εe) is
given by the following two-invariant expression:

ψ(εe)= ψ̄(εe
v, ε

e
s )= ψ̃(εv)+

3
2

[
G0 + α

κ̂
ψ̃(εv)

] (
εe
s

)2
, (30)

where

ψ̃(εv) :=
{
κ̂pr exp

(
εev/κ̂−1

)
(εev ≥ κ̂),

prε
e
v +pr

(
εev − κ̂)2 /(2κ̂) (εev < κ̂).

(31)

2In the general case of non-associative hardening plasticity, assumption (25) places a restriction on the
amount of allowable softening, as discussed in [34] in the context of a simple one-dimensional case,
excluding the possibility of subcritical softening, as defined in [35]. In practice, this restriction does not
represent a true limitation of the theory, as this phenomenon is not observed in most geomaterials,
except perhaps in very stiff, brittle rocks.
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In Equations (30), (31), pr represents a reference mean stress, while κ̂, G0 and α are
material constants. From (16) and (30) the following expression for the elastic stiffness tensor
is obtained:

D
e

:=
[

1+ 3α
2κ̂

(
εe
s

)2]
Kε1⊗1+2

(
G0 + α

κ̂
ψ̃
)[

I − 1
3

1⊗1
]

+

+2
(α
κ̂

)
θε

(
1⊗ e

e + e
e ⊗1

)
, (32)

where e
e

:= εe − (εe
v/3)1 is the deviatoric elastic strain, and the two functions θε(εe

v) and
Kε(ε

e
v) are given by

θε := dψ̃
dεe
v

=
{
pr exp

(
εe
v/κ̂−1

)
(εe
v ≥ κ̂),

pr
(
εe
v/κ̂

)
(εe
v < κ̂),

(33)

and

Kε := dθε
dεe
v

=
{
(pr/κ̂) exp

(
εe
v/κ̂−1

)
(εe
v ≥ κ̂),

pr/κ̂ (εe
v < κ̂).

(34)

In the range εe
v ≥ κ̂, the adopted stored-energy function describes a fully nonlinear, pressure-

dependent hyperelastic behavior. It is worth noting that the adopted hyperelastic model exhib-
its volumetric-deviatoric coupling, which is associated with the last term on the RHS of (32).
This coupling effect disappears when the state of the material is isotropic (ee =0), or if α=0.

4.1.3. Yield function and plastic potential
The yield function and plastic potential are given by a suitably modified version of the equa-
tions proposed by Lagioia et al. [33,37] to account for rotational anisotropy:

f (�, ps,�
a)=f (pa, qa, θa,ps)

=
(
Aaf

)K1f /Cf
(
Baf

)−K2f /Cf
pa −ps =0, (35)

g(�,�a)=g(pa, qa, θa)
=
(
Aag

)K1g/Cg
(
Bag

)−K2g/Cg
pa − p̃s =0, (36)

where

Aaα :=1+ 1
K1αMα(θa,�

a)

qa

pa
, (37)

Baα :=1+ 1
K2αMα(θa,�

a)

qa

pa
, (38)

K1α := mα(1−aα)
2(1−mα)

{
1+

√
1− 4aα(1−mα)

mα(1−aα)2
}
, (39)

K2α := mα(1−aα)
2(1−mα)

{
1−

√
1− 4aα(1−mα)

mα(1−aα)2
}
, (40)

Cα := (1−mα)(K1α −K2α) (41)

with α=f or g, and

pa := 1
3
� ·�a, qa :=

√
3
2

‖s a‖, sin(3θa)= 27
2

(
td

qd

)3

(42)
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in which

s a :=�−pa�a, d
a

:=dev(s a), (43)
(
qd
)2

:= 3
2

∥∥∥d
a
∥∥∥ ,

(
td
)3

:= 1
3

tr
(

d
a3
)
. (44)

The two functions Mα(θ
a,�a) appearing in Equations (37) and (38) are provided by the

expressions proposed by van Eekelen [38]:

Mα(θ
a,�a)=Mα

c (θ
a,�a) rαM(θ

a) (45)

with

rαM(θ
a)=kα1M

{
1+kα2M sin(3θa)

}nα , (46)

kα1M := 1
2nα

[1+ (cαM)1/nα ]nα , kα2M := 1− (cαM)1/nα
1+ (cαM)1/nα

, (47)

again with α= f or g. The eight quantities aα, mα, cαM and nα appearing in (39)–(41), (45)
and (46) are material constants, while p̃s is a dummy parameter. The nature of the two
functions Mα

c (θ
a,�a) will become clear when the hardening law for �a is discussed in Sec-

tion 4.1.4.
The typical shape of the yield function described by (35) is shown in Figure 5, in the q-p

plane (at θ =π/6). The set of internal variables includes the scalar quantity ps , defining the
size of the elastic domain, and the second-order tensor �a , which controls its orientation in
stress space and accounts for plastic strain-induced anisotropy. Since �a is a director, its norm
‖�a‖=const.=√

3. The scalars pa , qa and θa are joint invariants of the second-order tensors
� and �a , and are similar to those adopted in [39]. The plastic potential and the yield func-
tion share the same shape but in general are not coincident. The special case of associative
flow (f ≡g) can be obtained by an appropriate choice of the relevant parameters.

4.1.4. Hardening laws
The evolution of the scalar internal variable ps , which plays the same role as the pre-consol-
idation pressure of classical isotropic-hardening critical-state models (see, e.g. [40]), is associ-
ated with the first two invariants of the plastic strain rate, as suggested in [41]:

ṗs =ρsps
(
ε̇p
v + ξs ε̇p

s

)= λ̇ ρsps
(
T̂ + ξsN̂

)
(48)

Figure 5. Yield surface of the anisotropic hardening model in the q-p plane.
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in which

T̂ := tr
(

n g
)
, N̂ :=

√
2
3

∥∥∥dev
(

n g
)∥∥∥ (49)

and ρs and ξs are material constants, controlling the rate of expansion/contraction of the yield
surface and the balance between deviatoric and volumetric hardening, respectively.

As
∥∥�a∥∥= const., the two tensors �̇

a
and �a must be orthogonal:

�̇
a ·�a =0.

Therefore, the evolution equation for �a is necessarily of the form:

�̇
a = λ̇ k(�, ps,�a)

{
�̂− 1

3

(
�̂ ·�a)�a

}
, (50)

where �̂ is an arbitrary symmetric second-order tensor. The evolution law (48) inspires the
adoption of the following expression for the scalar coefficient k:

k(�,�a)=ρδ
(
T̂ + ξδN̂

)
, (51)

where ρδ and ξδ are material constants controlling the rate of rotation of the yield surface.
Note that, since n g is independent of ps, k is a function of � and �a only. Following di Prisco
[30,31], the tensor �̂ is assumed to depend only on the current stress state, according to

�̂= cos ϕ̂ 1+
√

3 sin ϕ̂
d
a

∥∥∥d
a
∥∥∥
, (52)

where

ϕ̂(θa)= ϕ̂c rϕ(θa) (53)

and

rϕ(θ
a)=k1ϕ

{
1+k2ϕ sin(3θa)

}nϕ , (54)

k1ϕ := 1
2nϕ

[1+ (cϕ)1/nϕ ]nϕ , k2ϕ := 1− (cϕ)1/nϕ
1+ (cϕ)1/nϕ

. (55)

It is easy to recognize from (50) that the tensor �̂, with
∥∥�̂∥∥=√

3, is the asymptotic value of
�a in the limit condition

(
�̇, ṗs, �̇

a
)

→ (0,0,0) .

The scalar quantity ϕ̂ represents the maximum inclination of the tensor �̂ with respect to
the isotropic axis, and is assumed to depend on the Lode angle via the van Eekelen expres-
sion (53), characterized by the three scalar parameters ϕ̂c, cϕ and nϕ . The scalar constant ϕ̂c
is the value of the inclination ϕ̂ in axisymmetric compression (θa =π/6), while the constant
cϕ defines the ratio between the values of ϕ̂ in axisymmetric extension (θa=−π/6) and com-
pression.

Anandarajah and Dafalias [39] and di Prisco [30,31] observed that, to better reproduce the
available experimental data, the shape of the yield function must change as it rotates. There-
fore they included an additional hardening variable to account for shape-hardening effects. In



An assessment of plasticity theories for granular soils 279

this work, the simpler strategy is adopted of linking the values of the functions Mf
c and M

g
c

appearing in (45) to a scalar measure of the yield surface rotation. In particular, we set

Mα
c (θ

a,�a)=Mα
c0 + (Mα

c1 −Mα
c0

) ϕ

ϕ̂(θa)
(α=f, g), (56)

where the angle ϕ is defined as

ϕ := cos−1
(

1
3

tr �a
)
. (57)

Equation (56) defines a linear interpolation for Mα
c between the two values Mα

c0 (at ϕ=0) and
Mα
c1 (at ϕ= ϕ̂).

4.2. Bounding-Surface model with radial mapping

An important limitation of classical elastoplasticity as applied to geomaterials is represented
by the assumption of a large elastic domain, inside which the response of the material is
purely reversible. In view of the concepts introduced in Section 2, classical – perfect or hard-
ening – elastoplasticity is characterized by an incrementally bilinear constitutive equation
only for states on the yield surface. All elastic states are, by definition, endowed with an
incrementally linear response. However, a large body of experimental evidence suggests that
soil behavior can be irreversible and path-dependent, even for strongly preloaded states, and
that plastic yielding is a rather gradual process. Although such effects can be considered
of secondary importance in the simulation of monotonic loading paths, it must be noted
that a strong dependence of the small-strain stiffness on the loading-path direction has been
observed, e.g., by [42,43] in heavily overconsolidated soils, and that such a feature of soil
behavior is of great importance in all practical applications in which strong variations of the
stress-path direction are expected in different zones of the soil mass, e.g., in the analysis of
excavations. Moreover, irreversible (plastic) strains occurring well inside the locus of admissi-
ble stress states are obviously of great importance in cyclic loading processes, and the accurate
description of such phenomena as cyclic mobility or liquefaction under repeated loading (see,
e.g. [44]) requires to take these into proper account.

A number of alternative strategies have been proposed to overcome these limitations of the
classical theory of plasticity; see for example the review article by [12]. In this work, we con-
sider the two approaches of Bounding Surface Plasticity with radial mapping, after Dafalias
and coworkers [39,45–47], and Generalized Plasticity after Pastor et al. [48]. In this section,
the former approach is adopted to develop a Bounding Surface version of the basic model
described in Section 4.1, while its extension to Generalized Plasticity is detailed in Section 4.3.

The key concept in the formulation of a Bounding Surface model is the fact that the
domain Eσ defined by (18) represents the locus of admissible states, rather than the elastic
domain of the material. The Bounding Surface (BS), which separates admissible from impos-
sible states, is given by the equation f (�,q )=0, exactly as a standard yield surface in classical
plasticity. However, such a surface is not a yield surface, as plastic strains can occur for stress
states located in its interior.

For stress states lying on the BS, the evolution equations for stress and internal variables
are identical to those of the elastoplastic reference model, viz. (27)–(29). For states inside the
BS, the flow rule (19)1 is modified as follows:

ε̇p = λ̇ n̄g, (58)
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in which n̄g is the plastic flow direction and λ̇≥0 is the plastic multiplier, given by

λ̇= 1

K̃p

〈
n̄f ·D

e
ε̇
〉
, (59)

where

K̃p := n̄f ·D
e
n̄g + H̃p, (60)

in which n̄f is the loading direction, and H̃p, by analogy with the standard formulation, plays
the role of the plastic modulus.

The definition of n̄g, n̄f and H̃p requires that, for each stress state � inside the BS a cor-
responding image state � is defined on the BS, through a non-invertible mapping rule. The
mapping rule adopted in this study is a radial mapping with projection center located at the
origin of the stress space, as in [45]; see Figure 6. The image state is then given by:

�=b�, b∈ [1,∞). (61)

The loading direction, n̄f , and the plastic flow direction, n̄g, are taken as the normalized gra-
dients of the functions f and g at the image state �:

n̄f := 1

f
∗

�f
��
, n̄g := 1

g∗
�g
��
, (62)

while the plastic modulus H̃p is assumed to be a monotonically decreasing function of the
distance

d :=‖�−�‖= (b−1)‖�‖ (63)

between the current state and the image state and of the plastic modulus Hp evaluated at �:

H̃p= H̃ (
Hp,d

)
,

�H̃
�d

>0, H̃
(
Hp,0

)=Hp. (64)

After [45] the following expression for the plastic modulus is adopted,

H̃p=Hp+ h0Lρsps

f̄ ∗ḡ∗
1

〈b/(b−1)− sL〉 , (65)

Figure 6. Bounding Surface and radial mapping rule.
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in which h0L and sL ≥ 1 are two additional material constants. The former controls the
stiffness of the material for states far from the BS, while the latter is used to define a region,
close to the projection center, known as elastic nucleus. In fact, when b is large enough for the
term [b/(b−1)− sL] to be negative or zero, the plastic modulus in (65) goes to infinity, and
the plastic strain rate vanishes. When sL is close to 1, the elastic nucleus is small (vanishing
for sL=1), whereas it tends to coincide with the BS as sL→∞.

4.3. Generalized Plasticity model

A further step towards the extension of classical plasticity to deal with complex loading
conditions, taking into account such phenomena as progressive yielding at small strain lev-
els, history-dependence and hysteretic behavior, liquefaction, cyclic mobility or densification,
is provided by the framework of Generalized Plasticity, first suggested by Zienkiewicz and
Mroz [49] and subsequently developed by Pastor et al. [48] for applications to cyclic behavior
of fine- and coarse-grained soils.

The main feature of Generalized Plasticity is that no plastic potential, yield surface or
bounding surface need to be explicitly defined, and no consistency condition is enforced. In
Generalized Plasticity the elastic constitutive equation – (15) or (16) – remains the same,
whereas the flow rule (19)1 is now replaced by the following evolution laws:

ε̇p = λ̇L n gL if nL ·D
e
ε̇ ≥0, (66)

ε̇p = λ̇U n gU if nL ·D
e
ε̇<0, (67)

in which the plastic multipliers for loading (λ̇L) and unloading (λ̇U ) are given by

λ̇L= 1

K̂pL
nL ·D

e
ε̇, λ̇U = 1

K̂pU
nL ·D

e
ε̇ (68)

with

K̂pL :=nL ·D
e
n gL+ ĤpL, (69)

K̂pU :=nL ·D
e
n gU + ĤpU . (70)

In Equation (66)–(70), nL, n gL and n gU define the loading direction, the plastic-flow direc-
tion for plastic loading and the plastic-flow direction for plastic unloading (reverse loading),
respectively, while the scalars ĤpL and ĤpU are the corresponding plastic moduli for (plas-
tic) loading and unloading. All these quantities are considered as prescribed functions of the
state variables (�,q ), to be determined from the main features of the observed behavior of the
material, but not necessarily deriving from any yield function, plastic potential, or consistency
condition.

In order to develop a Generalized Plasticity model which could be thought of as a hierar-
chical extension of the elastoplastic model presented in Section 4.1 and of the corresponding
Bounding Surface version of Section 4.2, the choice is made here to assume

nL≡ n̄f , n gL≡ n̄g, (71)

with n̄f and n̄g given by (62). This amounts to identifying the loading tensor with the unit
normal to the bounding surface f (�, ps,�

a)= 0 at the image state � – given by (61) – and
the plastic-flow direction in loading with the normalized gradient of the plastic potential
at � (see Figure 7). As for the plastic-flow direction in unloading, guided by the results
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Figure 7. Definition of loading tensor n
L

and plastic

flow directions for loading, n
gL

, and unloading, n
gU

.

Figure 8. Geometrical interpretation of tensors m and
ñ in the deviatoric plane.

obtained in DEM simulations of deviatoric probing tests, see [20], the simple choice of setting
n gU =−n gL has been adopted.

For states on the bounding surface, the plastic modulus ĤpL is given by (25)2, as in the
classical elastoplastic model, while ĤpU → ∞. For states inside the bounding surface, both
plastic moduli are continuous functions of Hp(�) and of the distance d between the current
state and the image state:

ĤpL=Hp+ h0Lρsps

f
∗
g∗

1
〈b/(b−1)− sL〉 , (72)

ĤpU =Hp+ h0Uρsps

f
∗
g∗

1

〈b− sU 〉β , (73)

where h0L, sL≥1, h0U , sU ≥1 and β are material constants. Equation (72) is identical to (65).
The simple expression adopted for the plastic modulus in unloading, ĤpU , provides very high
values close to the bounding surface (b=∞ for b≤ sU ), which decrease with increasing dis-
tance between the current state and the image state.

4.4. Generalized tangential plasticity

The third and last extension of the basic elastoplastic model presented in Section 4.1 has been
obtained by equipping the Generalized Plasticity model of Section 4.3 with the concept of a
tangential flow rule, as proposed by Papamichos and Vardoulakis [50]. This choice is moti-
vated by the DEM results presented in [20], which indicate that the direction of plastic-strain
increments in the deviatoric plane may not be unique, and depends, in general, on the stress-
increment direction.

According to [50], the additive strain decomposition in Equation (14) must be modified as
follows:

ε̇ = ε̇e + ε̇
p
‖ + ε̇

p
⊥. (74)

In the above equation, ε̇
p
‖ represents the conventional plastic-strain rate, given by the flow rule

(66) – loading – or (67) – unloading – while ε̇
p
⊥ is an additional contribution to the plastic

strain rate, known as tangential plastic strain rate.
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The term tangential used for ε̇
p
⊥ refers to its direction with respect to the unit normal n L

to the bounding surface. In fact, the amount of tangential plastic strain rate is governed by
the following flow rule:

ε̇
p
⊥ = 1

h1
ñ, (75)

where

ñ := I ⊥ṡ, I ⊥ := I −m ⊗m , m :=
dev

(
D

e
nL
)

∥∥∥dev
(

D
e
nL
)∥∥∥

(76)

and h1 is a material constant, known as tangential plastic modulus. In the particular case of
isotropic elasticity, m is normal to the bounding surface in the deviatoric plane, and ñ rep-
resents the projection of the deviatoric stress rate, ṡ , onto the tangent plane to the bounding
surface at the image point (see Figure 8).

The particular choice of ñ allows to retain the expressions given by (68) for the plastic
multipliers λ̇L and λ̇U . In fact, for states on the bounding surface, the consistency condition
upon plastic loading reads

ḟ =f ∗nL ·D
e
[
ε̇ − λ̇Ln gL− 1

h1
ñ

]
+ λ̇L �f

�q
·h =0

which yields

λ̇L= 1

nL ·D
e
n gL+Hp

(
nL ·D

e
ε̇ − 1

h1
nL ·D

e
ñ

)

= 1

nL ·D
e
n gL+Hp

nL ·D
e
ε̇, (77)

since, according to (76), nL · D
e
ñ= ñ · D

e
nL= 0. The above result motivates the adoption of

the same expressions (68), even for states inside the bounding surface, with the plastic moduli
now given by (72) and (73).

Combining the elastic constitutive equation in rate form with the flow rules for the two
components of the plastic-strain rate, we have:

�̇=D
ep

ε̇ −D
e
ε̇

p
⊥, (78)

where

D
ep

:=D
e − 1

K̂pL/U

(
DengL/U

)⊗
(

nLD
e
)

(79)

is the elastoplastic tangent stiffness tensor, with plastic moduli and plastic-flow directions
properly selected for loading or unloading according to the strain-rate direction.

The tangential plastic-strain rate appearing in the last term on the RHS of (78) can be
expressed as a function of the total strain rate as follows. Let

I dev := I − 1
3

1⊗1 , N := I ⊥I dev = I −m ⊗m − 1
3

1⊗1. (80)
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Then, according to Equations (75), (72), (73) and (79), we have:

ε̇
p
⊥ = 1

h1
N �̇= 1

h1
N D

e
(
ε̇ − λ̇L/Un gL/U − ε̇

p
⊥
)

= 1
h1

N D
ep

ε̇ − 1
h1

N D
e
ε̇

p
⊥. (81)

Solving for ε̇
p
⊥, we obtain

ε̇
p
⊥ =K

−1
N D

ep
ε̇ (82)

in which

K :=h1I +N D
e
. (83)

Finally, substituting (83) in (78), we obtain the constitutive equation in rate form as:

�̇=
{

D
ep −D

e
(K

−1
N )D

ep
}

ε̇. (84)

It is worth noting that the constitutive equation of the Generalized Plasticity model is recov-
ered from (84) as h1 →∞.

5. Predicted vs. experimental responses

In the following, the DEM response obtained from the stress-probing programs discussed in
Section 3.3 is compared to the predictions of the three extended plasticity models discussed
in Section 4. Herein, the comparison is intended mainly as a tool to evaluate the qualita-
tive features of the directional response of the different constitutive equations. Accordingly,
no detailed calibration of the relevant material parameters has been performed for the three
models. Rather, the different sets of material parameters adopted in the simulations (reported
in Table 2) have been assigned taking as a starting point the results of a single DEM sim-
ulation of an axisymmetric, drained compression test, as reported in [9]. Some quantitative
differences between model predictions and DEM responses are therefore to be expected.

5.1. Axisymmetric probes

5.1.1. Virgin initial state B
The discrete DEM response to axisymmetric stress probes (Figure 2a) with ‖��‖ = 10 kPa,
starting from the (virgin) initial state B, is shown in Figure 9. The corresponding predictions
of the bounding surface model (BS), generalized plasticity model (GP) and generalized tan-
gential plasticity model (GTP) are shown in Figures 10 and 11, respectively. Note that for this
particular loading condition, the response of the GP and GTP models are identical, as ñ=0.

As has already been observed in our previous publications, see e.g. [20], the overall behav-
ior of the DEM model at the virgin state B conforms to that of a classical elastoplastic
model with a single plastic mechanism. In particular, Figure 9 shows that the total and elastic
response envelopes are nearly coincident within a significant portion of the Rendulic plane of
strain increments, and that the plastic RE nearly collapses into a single line, which indicates
that the plastic flow direction does not depend on the imposed loading direction.

The envelopes predicted by the BS model (Figure 10) reproduce quite well this pattern
of response. A good agreement is also observed between DEM simulations and the predic-
tions of the two Generalized Plasticity models (Figure 11), with the only possible exception
of a slight overestimation of plastic-strain increments in unloading conditions, which are not
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Table 2. Material parameters adopted for BS, GP and GTP models.

α κ̂ G0 pr af mf c
f

M M
f

c0 M
f

c1
Model (–) (–) (MPa) (kPa) (–) (–) (–) (–) (–)

BS 0·0 0·0037 24·1 100·0 0·7 0·9999 0·9 0·7 0·6
GP 0·0 0·0037 24·1 100·0 0·7 0·9999 0·9 0·7 0·6

GTP 0·0 0·0037 24·1 100·0 0·7 0·9999 0·9 0·7 0·6
ag mg c

g

M M
g

c0 M
g

c1 ρs ξs ρδ ξδ
Model (–) (–) (–) (–) (–) (–) (–) (–) (–)

BS 0·8 0·9999 0·9 1·2 1·08 250·0 0·47 100·0 0·2
GP 0·8 0·9999 0·9 1·2 1·08 250·0 0·47 100·0 0·2

GTP 0·8 0·9999 0·9 1·2 1·08 250·0 0·47 100·0 0·2
φ̂c h0L sL h0U sU β h1

Model (–) (–) (–) (–) (–) (–) (MPa)

BS 0·2 1·0 1·005 — — — —
GP 0·2 1·0 1·005 1·5 1·005 1·5 —

GTP 0·2 1·0 1·005 1·5 1·005 1·5 200·0

Figure 9. Axisymmetric response envelopes for virgin
initial state B: DEM results.

Figure 10. Axisymmetric response envelopes for virgin
initial state B: BS model predictions.

detectable in the DEM results. Actually, the DEM behavior at this particular initial state
could be equally well reproduced by the classical elastoplastic model outlined in Section 4.1.

5.1.2. Preloaded initial state B′

The most striking feature of the incremental response exhibited by the DEM model upon axi-
symmetric stress probing starting from the preloaded state B′, see Figure 12, is that plastic
strains do occur for almost all the prescribed loading directions. These plastic-strain incre-
ments are definitely lower in magnitude as compared to those observed at the corresponding
virgin state B. In a first approximation, they could be neglected if the main interest is in the
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Figure 11. Axisymmetric response envelopes for virgin
initial state B: GP and GTP model predictions.

Figure 12. Axisymmetric response envelopes for pre-
loaded initial state B′: DEM results.

modeling of gross yield phenomena at medium to large strain levels. In this case, the use of
classical plasticity would be appropriate. If, however, the focus is on the constitutive modeling
of material behavior at small strains, then the data clearly show the need for a more general
constitutive framework. More specifically, the DEM response at the preloaded state indicates:
(i) the lack of a discernible elastic range, as plastic loading occurs for all the stress probes

except for two ‘neutral loading’ directions, symmetric about the origin;
(ii) the existence of two distinct plastic-flow directions which, for all practical purposes, can

be assumed to be coincident, but with opposite orientation.
While the BS model can predict reasonably well the pattern of plastic strains for those stress
probes which induce plastic loading conditions, its response to stress probes in the opposite
directions remains elastic; see Figure 13. On the contrary, the response of the GP and GTP
models, shown in Figure 14, reproduces quite well these features. Although some discrepan-
cies exist and are noticeable in the plastic-flow direction, these are solely due to details of the
model formulations and/or inaccurate characterization of the relevant material parameters.

Overall, the GP and GTP models – due to their ability of developing plastic deformations
in unloading – are capable of correctly reproducing the observed pattern of irreversible behav-
ior. In particular, the fact that in generalized plasticity the plastic loading/unloading condi-
tions are controlled by a single loading direction is consistent with feature (i), whereas it is
the observation (ii) which motivated our choice about the plastic-flow direction in unloading.

5.2. Deviatoric probes

Figure 15 shows the discrete DEM responses for deviatoric stress probes with ‖��‖=10 kPa
(see Figure 2b). Only the virgin state B is considered hereafter. As observed in [20], a
clear dependence of the direction of plastic-strain increments on the stress-probe direction
is apparent. In the deviatoric plane, the plastic RE does not collapse into a single line, but
rather is a closed loop, symmetric about the �εz axis. Note that the direction of the plastic-
strain increments in the Rendulic plane, not shown here, is almost constant and coincident
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Figure 13. Axisymmetric response envelopes for pre-
loaded initial state B′: BS model predictions.

Figure 14. Axisymmetric response envelopes for pre-
loaded initial state B′: GP and GTP model predic-
tions.

Figure 15. Deviatoric response envelopes for virgin ini-
tial state B: DEM results.

Figure 16. Deviatoric response envelopes for virgin ini-
tial state B: BS model predictions.

with the direction of incremental plastic-strains as computed in the axisymmetric case (Fig-
ure 9). Results also indicate that the plastic-strain increments corresponding to stress probes
orthogonal to the �σz axis are not negligible.

The response of the BS model is shown in Figure 16. For infinitesimal stress probes, the plastic
RE should be a single line parallel to the�εz axis. However, this is not the case here, as the envelope
does show some dependence of plastic-strain increments on the applied stress increment direction,
although this effect is small, i.e., the plastic RE is rather flat about the�εz axis. It is worth noting
that this particular feature of the plastic-response envelope is not to be attributed to any incremental
nonlinearity of the constitutive equation, but is rather a consequence of the finite size of the stress
increment and of the high curvature of the plastic potential at the initial stress state. For probes
which deviate from the �σz axis, the current state is no longer axisymmetric as soon as the stress
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Figure 17. Deviatoric response envelopes for virgin ini-
tial state B: GP model predictions.

Figure 18. Deviatoric response envelopes for virgin ini-
tial state B: GTP model predictions.

increment brings the state of the material out of the so-called triaxial plane. In such conditions, the
plastic strain rate changes continuously direction in the deviatoric plane, following the curvature
of the plastic-potential function.

The response of the GP model, shown in Figure 17, is quite close to that of the BS
model, except for the appearance of some small plastic-strain increments in unloading, which
are not detected in the DEM simulations. The assumption of a single loading mechanism,
controlled by tensor n , is reflected in the existence of two ‘neutral loading’ directions, orthog-
onal to the �σz axis, according to the symmetry of the initial stress state and specimen micro-
structural features (induced anisotropy). This is however in sharp contrast with the observed
DEM behavior (see Figure 15), as in the DEM simulations total and elastic-strain increments
appear to be nearly coincident in a region of the strain-increment space which is approxi-
mately bounded by the traces of the �εx and �εy axes, forming an angle of about 2π/3.

Such a deficiency of the GP model, which is shared by all plasticity theories with a sin-
gle loading mechanism, was the main motivation for the introduction of tangential plasticity
in the GP formulation. This has the effect of allowing plastic deformation for all the possible
loading directions, as shown in Figure 18. The plastic RE, resulting from the sum of the nor-
mal and tangential contributions (see Figure 19), has now a lower aspect ratio, as compared
to the plastic RE of the GP model. In particular, as the tangential component of the plastic
strain attains its maximum for the two loading directions which are orthogonal to the axisym-
metric stress plane (i.e., for the two neutral loading directions of the GP model), the plastic
envelope is rather large along the horizontal direction in the deviatoric plane of strain incre-
ments. However, such a feature of the plastic RE is not apparent in the plastic RE obtained
in the DEM simulations, and therefore, the introduction of tangential plasticity in conven-
tional or extended elastoplastic formulations as a mean to provide the constitutive equations
with a certain degree of incremental non linearity does not appear completely satisfactory –
from both a quantitative and a qualitative point of view.

6. Concluding remarks

The emphasis of this paper has been on the evaluation of extended plasticity theories for
modeling the qualitative features of material response, as observed for an analogue granular
material, as a function of the previous stress history and loading conditions. A key assump-
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Figure 19. Deviatoric probing at virgin initial state B: detail of plastic response envelope of GTP model.

tion of the present work is that the adopted DEM model sand is capable of displaying all
the relevant features of the incremental behavior of real granular soils. In fact, this has been
confirmed in a number of previous studies; see e.g. [9,21].

The main results obtained in this investigation can be summarized as follows:
1. The observed behavior of the model sand upon stress-probing in the deviatoric plane,

starting from a virgin, axisymmetric stress state, departs from the basic assumptions of
classical plasticity, as the direction of the plastic strain vector in the strain increment
space does depend on the stress-probe direction.

2. The observed behavior of the model sand upon axisymmetric probing from a preloaded
state also departs from the basic assumptions of classical plasticity, as non-negligible plas-
tic-strain increments are observed, even inside the so-called ‘state boundary surface’, sep-
arating admissible from impossible stress states in stress space.

3. Upon axisymmetric probing from a preloaded state, plastic strains do occur for (almost)
all probing directions. This is clear evidence of the occurrence of reverse plastic loading,
which cannot be properly described by such generalizations of classical plasticity as radial
mapping Bounding Surface models.

4. Generalized Plasticity appears more suitable than Bounding Surface plasticity for captur-
ing reverse-loading effects observed in axisymmetric probing tests.

5. Tangential Plasticity is effective in introducing a certain degree of dependence of plastic
strain increment direction on loading direction (i.e., incremental nonlinearity). However,
the qualitative response obtained does not appear to be completely satisfactory. Whether
more general approaches to incremental nonlinearity, such as, for example, the theory of
hypoplasticity [51,52], can perform better in this respect, is still an open question.
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